Semantic Assisted, Multiresolution Image Retrieval in 3D Brain MR Volumes
نویسنده
چکیده
Content Based Image Retrieval (CBIR) is an important research area in the field of multimedia information retrieval. The application of CBIR in the medical domain has been attempted before, however the use of CBIR in medical diagnostics is a daunting task. The goal of diagnostic medical image retrieval is to provide diagnostic support by displaying relevant past cases, along with proven pathologies as ground truths. Moreover, medical image retrieval can be extremely useful as a training tool for medical students and residents, follow-up studies, and for research purposes. Despite the presence of an impressive amount of research in the area of CBIR, its acceptance for mainstream and practical applications is quite limited. The research in CBIR has mostly been conducted as an academic pursuit, rather than for providing the solution to a need. For example, many researchers proposed CBIR systems where the image database consists of images belonging to a heterogeneous mixture of man-made objects and natural scenes while ignoring the practical uses of such systems. Furthermore, the intended use of CBIR systems is important in addressing the problem of “Semantic Gap”. Indeed, the requirements for the semantics in an image retrieval system for pathological applications are quite different from those intended for training and education. Moreover, many researchers have underestimated the level of accuracy required for a useful and practical image retrieval system. The human eye is extremely dexterous and efficient in visual information processing; consequently, CBIR systems should be highly precise in image retrieval so as to be useful to human users. Unsurprisingly, due to these and other reasons, most of the proposed systems have not found useful real world applications. In this dissertation, an attempt is made to address the challenging problem of developing a retrieval system for medical diagnostics applications. More specifically, a system for iii semantic retrieval of Magnetic Resonance (MR) images in 3D brain volumes is proposed. The proposed retrieval system has a potential to be useful for clinical experts where the human eye may fail. Previously proposed systems used imprecise segmentation and feature extraction techniques, which are not suitable for precise matching requirements of the image retrieval in this application domain. This dissertation uses multiscale representation for image retrieval, which is robust against noise and MR inhomogeneity. In order to achieve a higher degree of accuracy in the presence of misalignments, an image registration based retrieval framework is developed. Additionally, to speed-up the retrieval system, a fast discrete wavelet based feature space is proposed. Further improvement in speed is achieved by semantically classifying of the human brain into various “Semantic Regions”, using an SVM based machine learning approach. A novel and fast identification system is proposed for identifying a 3D volume given a 2D image slice. To this end, we used SVM output probabilities for ranking and identification of patient volumes. The proposed retrieval systems are tested not only for noise conditions but also for healthy and abnormal cases, resulting in promising retrieval performance with respect to multi-modality, accuracy, speed and robustness. This dissertation furnishes medical practitioners with a valuable set of tools for semantic retrieval of 2D images, where the human eye may fail. Specifically, the proposed retrieval algorithms provide medical practitioners with the ability to retrieve 2D MR brain images accurately and monitor the disease progression in various lobes of the human brain, with the capability to monitor the disease progression in multiple patients simultaneously. Additionally, the proposed semantic classification scheme can be extremely useful for semantic based categorization, clustering and annotation of images in MR brain databases. This research framework may evolve in a natural progression towards developing more powerful
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملDiscriminative, Semantic Segmentation of Brain Tissue in MR Images
A new algorithm is presented for the automatic segmentation and classification of brain tissue from 3D MR scans. It uses discriminative Random Decision Forest classification and takes into account partial volume effects. This is combined with correction of intensities for the MR bias field, in conjunction with a learned model of spatial context, to achieve accurate voxel-wise classification. Ou...
متن کاملAtlas-Based Segmentation of the Germinal Matrix from in Utero Clinical MRI of the Fetal Brain
Recently developed techniques for reconstruction of high-resolution 3D images from fetal MR scans allows us to study the morphometry of developing brain tissues in utero. However, existing adult brain analysis methods cannot be directly applied as the anatomy of the fetal brain is significantly different in terms of geometry and tissue morphology. We describe an approach to atlas-based segmenta...
متن کاملIntegrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors
Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...
متن کاملLossy Multiresolution Compression and Segmentation of 3D MR Images of the Head
In this paper, lossy compression of 3D MR images of the human brain is associated with a segmentation algorithm, in the context of an interactive brain sulci delineation application. Innuence of compression losses is analyzed according to the segmentation results. Lossy compression is performed by subband coding leading to a multiresolution representation of the image. Wavelets are adapted for ...
متن کامل